big-data environment

  • zookeeper(apache-zookeeper-3.5.6-bin)
  • hadoop(hadoop-3.2.1)
  • hbase(hbase-2.2.2)
  • 运行于单机环境中
  • 安装地址:/home/chen/work/service/

zookeeper

zookeeper 学习地址

configuration

conf/zoo.cfg

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10

# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5

# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just
# example sakes.
# dataDir=/tmp/zookeeper
dataDir=/home/chen/work/service/apache-zookeeper-3.5.6-bin/zookeeperdir/zookeeper-data
dataLogDir=/home/chen/work/service/apache-zookeeper-3.5.6-bin/zookeeperdir/logs

# the port at which the clients will connect
clientPort=2181

# 集群的配置
server.1=127.0.0.1:2888:3888

start

./bin/zkServer.sh start

stop

./bin/zkServer.sh stop

client connection

./bin/zkCli.sh

hbase support hadoop version

hbase support hadoop version

hadoop(3.2.1/3.0.0)

hadoop history version

hadoop 3.1.x and hadoop 3.2.x not use in hbase

This command that can check hadoop
> bin/hdfs getconf -backupNodes

hadoop can not use
~~

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
~~HDFS_GETCONF_USER~~
~~0.0.0.0~~
~~```~~

~~hadoop can use~~
~~```~~
~~0.0.0.0~~
~~```~~

### ssh localhost



### export

#### sudo nano /etc/profile
```shell script
export HADOOP_HOME=/home/chen/work/service/hadoop-3.2.1

source /etc/profile

sudo nano ~/.barshrc

script
1
export HADOOP_HOME=/home/chen/work/service/hadoop-3.2.1

source ~/.barshrc

etc/hadoop configuration

hadoop-env.sh

script
1
2
3
4
5
6
7
8
9
10
11
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

#export HDFS_NAMENODE_USER="root"

#export HDFS_DATANODE_USER="root"

#export HDFS_SECONDARYNAMENODE_USER="root"

#export YARN_RESOURCEMANAGER_USER="root"

#export YARN_NODEMANAGER_USER="root"

hdfs-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.name.dir</name>
<value>file:///home/chen/work/service/hadoop-3.2.1/hdfs/namenode-test</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>file:///home/chen/work/service/hadoop-3.2.1/hdfs/datanode-test</value>
</property>

<!--web request hdfs,but not must -->
<property>
<name>dfs.http.address</name>
<value>0.0.0.0:50070</value>
</property>


</configuration>

./bin/hadoop namenode -format

core-site.xml

1
2
3
4
5
6
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>

mapred-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

<configuration>
<property>
<name>mapred.job.tracker</name>
<value>http://localhost:49001</value>
</property>

<property>
<name>mapred.local.dir</name>
<value>/home/chen/work/service/hadoop-3.2.1/local-dir</value>
</property>

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>

<!-- <property>
<name>mapreduce.application.classpath</name>
<value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*:$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*</value>
</property> -->

</configuration>

yarn-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
<configuration>

<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>

<!-- 这里设置主节点 -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>127.0.0.1</value>
</property>

<property>
<description>The address of the applications manager interface in the RM.</description>
<name>yarn.resourcemanager.address</name>
<value>${yarn.resourcemanager.hostname}:8032</value>
</property>

<property>
<description>The address of the scheduler interface.</description>
<name>yarn.resourcemanager.scheduler.address</name>
<value>${yarn.resourcemanager.hostname}:8030</value>
</property>

<property>
<description>The https adddress of the RM web application.</description>
<name>yarn.resourcemanager.webapp.https.address</name>
<value>${yarn.resourcemanager.hostname}:8090</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>${yarn.resourcemanager.hostname}:8031</value>
</property>
<property>
<description>The address of the RM admin interface.</description>
<name>yarn.resourcemanager.admin.address</name>
<value>${yarn.resourcemanager.hostname}:8033</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<name>yarn.resourcemanager.webapp.address</name>
<value>${yarn.resourcemanager.hostname}:8088</value>
</property>

<!-- <property>
<name>yarn.nodemanager.env-whitelist</name>
<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
</property> -->

<!-- 这里设置主节点 -->

</configuration>

start

./sbin/start-all.sh

web url

http://localhost:8088/cluster

hbase(2.2.2)

configuration

hbase-env.sh

script
1
2
3
4
5

<!-- # HBASE_MANAGES_ZK=false 表示启动的是独立的zookeeper,而配置成true则是hbase自带的zookeeper -->
export HBASE_MANAGES_ZK=false

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

hbase-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
<configuration>
<!--hdfs://localhost:9000 is hadoop storage data address,you must config address in hadoop core-site.xml -->
<property>
<name>hbase.rootdir</name>
<value>hdfs://localhost:9000/hbase</value>
</property>

<!-- open web page -->
<property>
<name>hbase.master.info.port</name>
<value>60010</value>
</property>

<!-- distributed = true , hbase use external zookeeper -->
<property>
<name>hbase.cluster.distributed</name>
<value>true</value>
</property>

<!-- 分布式zookeeper configuration <value>127.0.0.1,192.168.1.1,192.168.1.2</value> -->
<property>
<name>hbase.zookeeper.quorum</name>
<value>127.0.0.1</value>
</property>

<property>
<name>hbase.zookeeper.property.dataDir</name>
<value>/home/chen/work/service/hbase-2.2.2/hbase-zookeeper</value>
</property>

<property>
<name>hbase.zookeeper.property.clientPort</name>
<value>2181</value>
</property>

<property>
<name>hbase.unsafe.stream.capability.enforce</name>
<value>false</value>
<description>
Controls whether HBase will check for stream capabilities (hflush/hsync).

Disable this if you intend to run on LocalFileSystem, denoted by a rootdir
with the 'file://' scheme, but be mindful of the NOTE below.

WARNING: Setting this to false blinds you to potential data loss and
inconsistent system state in the event of process and/or node failures. If
HBase is complaining of an inability to use hsync or hflush it's most
likely not a false positive.
</description>
</property>
</configuration>

start

./bin/start-hbase.sh

stop

./bin/stop-hbase.sh

client connection

./bin/hbase shell

error fix

Could not initialize class org.apache.hadoop.hbase.io.asyncfs.FanOutOneBlockAsyncDFSOutputHelper

  • error

    script
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    2019-01-16 15:26:44,501 ERROR [RS_OPEN_META-regionserver/shizhi002:16020-0] handler.OpenRegionHandler: Failed open of region=hbase:meta,,1.1588230740
    java.lang.NoClassDefFoundError: Could not initialize class org.apache.hadoop.hbase.io.asyncfs.FanOutOneBlockAsyncDFSOutputHelper
    at org.apache.hadoop.hbase.io.asyncfs.AsyncFSOutputHelper.createOutput(AsyncFSOutputHelper.java:51)
    at org.apache.hadoop.hbase.regionserver.wal.AsyncProtobufLogWriter.initOutput(AsyncProtobufLogWriter.java:167)
    at org.apache.hadoop.hbase.regionserver.wal.AbstractProtobufLogWriter.init(AbstractProtobufLogWriter.java:166)
    at org.apache.hadoop.hbase.wal.AsyncFSWALProvider.createAsyncWriter(AsyncFSWALProvider.java:113)
    at org.apache.hadoop.hbase.regionserver.wal.AsyncFSWAL.createWriterInstance(AsyncFSWAL.java:612)
    at org.apache.hadoop.hbase.regionserver.wal.AsyncFSWAL.createWriterInstance(AsyncFSWAL.java:124)
    at org.apache.hadoop.hbase.regionserver.wal.AbstractFSWAL.rollWriter(AbstractFSWAL.java:756)
    at org.apache.hadoop.hbase.regionserver.wal.AbstractFSWAL.rollWriter(AbstractFSWAL.java:486)
    at org.apache.hadoop.hbase.regionserver.wal.AsyncFSWAL.<init>(AsyncFSWAL.java:251)
    at org.apache.hadoop.hbase.wal.AsyncFSWALProvider.createWAL(AsyncFSWALProvider.java:73)
    at org.apache.hadoop.hbase.wal.AsyncFSWALProvider.createWAL(AsyncFSWALProvider.java:48)
    at org.apache.hadoop.hbase.wal.AbstractFSWALProvider.getWAL(AbstractFSWALProvider.java:152)
    at org.apache.hadoop.hbase.wal.AbstractFSWALProvider.getWAL(AbstractFSWALProvider.java:60)
    at org.apache.hadoop.hbase.wal.WALFactory.getWAL(WALFactory.java:284)
    at org.apache.hadoop.hbase.regionserver.HRegionServer.getWAL(HRegionServer.java:2104)
    at org.apache.hadoop.hbase.regionserver.handler.OpenRegionHandler.openRegion(OpenRegionHandler.java:284)
    at org.apache.hadoop.hbase.regionserver.handler.OpenRegionHandler.process(OpenRegionHandler.java:108)
    at org.apache.hadoop.hbase.executor.EventHandler.run(EventHandler.java:104)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
  • fix

WAL(Write-Ahead-Log)是HBase的RegionServer在处理数据插入和删除的过程中用来记录操作内容的一种日志
hbase.wal.provider=multiwal,支持的值还有defaultProvider和filesystem

1
2
3
4
<property>
<name>hbase.wal.provider</name>
<value>filesystem</value>
</property>

WAL的持久化的级别有如下几种:

SKIP_WAL:不写wal日志,这种可以较大提高写入的性能,但是会存在数据丢失的危险,只有在大批量写入的时候才使用(出错了可以重新运行),其他情况不建议使用。
ASYNC_WAL:异步写入
SYNC_WAL:同步写入wal日志文件,保证数据写入了DataNode节点。
FSYNC_WAL: 目前不支持了,表现是与SYNC_WAL是一致的
USE_DEFAULT: 如果没有指定持久化级别,则默认为USE_DEFAULT, 这个为使用HBase全局默认级别(SYNC_WAL)

start order

hadoop -> zookeeper -> hbase
zookeeper -> hadoop -> hbase

jps

jps

script
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
6608 DataNode
6817 SecondaryNameNode
7939 HRegionServer
2019 org.eclipse.equinox.launcher_1.5.600.v20191014-2022.jar
7783 HMaster
6440 NameNode
7576 QuorumPeerMain #使用外部的zookeeper时,启用QuorumPeerMain,否则使用QuorumPeer
25401 Main
7305 NodeManager
7050 ResourceManager
8334 Main
8814 Jps

```


test环境redis信息:
redis-cli -h 121.40.83.65 auth Yftestredis123

redis-cli -h 121.40.83.65 -p 6379 -a Yftestredis123

## kafka

## spark


## hive

## configuration

hive-env.sh

```shell script
HADOOP_HOME=/home/chen/work/service/hadoop-3.0.0
HBASE_HOME=/home/chen/work/service/hbase-2.2.2

JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64

HIVE_HOME=/home/chen/work/service/apache-hive-3.1.2-bin

export HIVE_CONF_DIR=$HIVE_HOME/conf
export HIVE_AUX_JARS_PATH=$HBASE_HOME/lib
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib:$HADOOP_HOME/lib:$HIVE_HOME/lib

hive-site.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://localhost:3306/hivedbH?createDatabaseIfNotExist=true</value>
<description>JDBC connect string for a JDBC metastore</description>
<!-- 如果 mysql 和 hive 在同一个服务器节点,那么请更改 hadoop02 为 localhost -->
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>as1996</value>
<description>password to use against metastore database</description>
</property>
<property>
<name>datanucleus.autoCreateSchema</name>
<value>true</value>
</property>
<property>
<name>datanucleus.autoCreateTables</name>
<value>true</value>
</property>
<property>
<name>datanucleus.autoCreateColumns</name>
<value>true</value>
</property>

<!-- 设置 hive仓库的HDFS上的位置 -->
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/home/chen/work/service/apache-hive-3.1.2-bin/hive/data</value>
<description>location of default database for the warehouse</description>
</property>

<property>
<name>hive.downloaded.resources.dir</name>
<value>/home/chen/work/service/apache-hive-3.1.2-bin/hive/resources</value>
<description>Temporary local directory for added resources in the remote file system.</description>
</property>

<!-- 修改日志位置 -->
<property>
<name>hive.exec.local.scratchdir</name>
<value>/home/chen/work/service/apache-hive-3.1.2-bin/hive/HiveJobsLog</value>
<description>Local scratch space for Hive jobs</description>
</property>


<property>
<name>hive.downloaded.resources.dir</name>
<value>/home/chen/work/service/apache-hive-3.1.2-bin/hive/ResourcesLog</value>
<description>Temporary local directory for added resources in the remote file system.</description>
</property>
<property>
<name>hive.querylog.location</name>
<value>/home/chen/work/service/apache-hive-3.1.2-bin/hive/HiveRunLog</value>
<description>Location of Hive run time structured log file</description>
</property>
<property>
<name>hive.server2.logging.operation.log.location</name>
<value>/home/chen/work/service/apache-hive-3.1.2-bin/hive/OpertitionLog</value>
<description>Top level directory where operation tmp are stored if logging functionality is enabled</description>
</property>

<!-- 配置HWI接口 -->
<property>
<name>hive.hwi.war.file</name>
<value>/home/chen/work/service/apache-hive-3.1.2-bin/lib/hive-hwi-2.1.1.jar</value>
<description>This sets the path to the HWI war file, relative to ${HIVE_HOME}. </description>
</property>
<property>
<name>hive.hwi.listen.host</name>
<value>localhost</value>
<description>This is the host address the Hive Web Interface will listen on</description>
</property>
<property>
<name>hive.hwi.listen.port</name>
<value>9999</value>
<description>This is the port the Hive Web Interface will listen on</description>
</property>
<property>
<name>hive.server2.thrift.bind.host</name>
<value>localhost</value>
</property>
<property>
<name>hive.server2.thrift.port</name>
<value>10000</value>
</property>
<property>
<name>hive.server2.thrift.http.port</name>
<value>10001</value>
</property>
<property>
<name>hive.server2.thrift.http.path</name>
<value>cliservice</value>
</property>

<!-- HiveServer2的WEB UI -->
<property>
<name>hive.server2.webui.host</name>
<value>localhost</value>
</property>
<property>
<name>hive.server2.webui.port</name>
<value>10002</value>
</property>
<property>
<name>hive.scratch.dir.permission</name>
<value>755</value>
</property>
<property>
<name>hive.server2.enable.doAs</name>
<value>false</value>
</property>
<property>
<name>hive.auto.convert.join</name>
<value>false</value>
</property>
<property>
<name>spark.dynamicAllocation.enabled</name>
<value>true</value>
<description>动态分配资源</description>
</property>

<property>
<name>hive.execution.engine</name>
<value>spark</value>
<description>这个值可以使mr/tez/spark中的一个作为hive的执行引擎,mr是默认值,而tez仅hadoop 2支持</description>
</property>

<property>
<name>hive.enable.spark.execution.engine</name>
<value>true</value>
</property>

<property>
<name>spark.home</name>
<value>/home/chen/work/service/spark-2.3.0-bin-hadoop2.7</value>
</property>
<property>
<name>spark.master</name>
<value>spark://127.0.0.1:7077</value>
<!-- <value>yarn-client</value> -->
</property>

<property>
<name>spark.serializer</name>
<value>org.apache.spark.serializer.KryoSerializer</value>
</property>
<property>
<name>spark.executor.memeory</name>
<value>1g</value>
</property>
<property>
<name>spark.driver.memeory</name>
<value>1g</value>
</property>
<!-- <property>
<name>spark.executor.extraJavaOptions</name>
<value>-XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"</value>
</property> -->
<!-- 使用Hive on spark时,若不设置下列该配置会出现内存溢出异常 -->
<property>
<name>spark.driver.extraJavaOptions</name>
<value>-XX:PermSize=128M -XX:MaxPermSize=512M</value>
</property>

<property>
<name>spark.submit.deployMode</name>
<value>client</value>
</property>
<property>
<name>spark.eventLog.enabled</name>
<value>true</value>
</property>
<property>
<name>spark.eventLog.dir</name>
<value>hdfs://localhost:9000/spark-log</value>
</property>


<property>
<name>hive.exec.reducers.bytes.per.reducer</name>
<value>1024</value>
</property>
<property>
<name>mapreduce.job.reduces</name>
<value>10</value>
</property>
<property>
<name> hive.exec.reducers.bytes.per.reducer</name>
<value>10</value>
</property>

<property>
<name>spark.yarn.jars</name>
<value>hdfs://localhost:8020/spark-jars/*</value>
</property>

</configuration>

拷贝JDBC包

script
1
cp mysql-connector-java-5.1.19-bin.jar /hive-2.1.1/lib/

删除Hadoop之前的jline包,拷贝Hive中jline的扩展包

script
1
cp /hive-2.1.1/lib/jline-2.12.jar /hadoop-3.0.0/share/hadoop/yarn/lib/

拷贝tools.jar包

script
1
cp /java8/lib/tools.jar /hive-2.1.1/lib/

init matedata database

script
1
2

./bin/schematool -dbType mysql -initSchema

start hive

script
1
./bin/hive

start serverhive2

script
1
2
3
./bin/hiveserver2

./bin/hiveserver2 --hiveconf hive.root.logger=INFO,console

jdbc connect hive

script
1
./bin/beeline -u jdbc:hive2://localhost:10000/default

error

  • error 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
java.lang.NoClassDefFoundError: org/apache/tez/dag/api/TezConfiguration
at org.apache.hadoop.hive.ql.exec.tez.TezSessionPoolSession$AbstractTriggerValidator.startTriggerValidator(TezSessionPoolSession.java:74) ~[hive-exec-3.1.2.jar:3.1.2]
at org.apache.hadoop.hive.ql.exec.tez.TezSessionPoolManager.initTriggers(TezSessionPoolManager.java:207) ~[hive-exec-3.1.2.jar:3.1.2]
at org.apache.hadoop.hive.ql.exec.tez.TezSessionPoolManager.startPool(TezSessionPoolManager.java:114) ~[hive-exec-3.1.2.jar:3.1.2]
at org.apache.hive.service.server.HiveServer2.initAndStartTezSessionPoolManager(HiveServer2.java:839) ~[hive-service-3.1.2.jar:3.1.2]
at org.apache.hive.service.server.HiveServer2.startOrReconnectTezSessions(HiveServer2.java:822) ~[hive-service-3.1.2.jar:3.1.2]
at org.apache.hive.service.server.HiveServer2.start(HiveServer2.java:745) ~[hive-service-3.1.2.jar:3.1.2]
at org.apache.hive.service.server.HiveServer2.startHiveServer2(HiveServer2.java:1037) [hive-service-3.1.2.jar:3.1.2]
at org.apache.hive.service.server.HiveServer2.access$1600(HiveServer2.java:140) [hive-service-3.1.2.jar:3.1.2]
at org.apache.hive.service.server.HiveServer2$StartOptionExecutor.execute(HiveServer2.java:1305) [hive-service-3.1.2.jar:3.1.2]
at org.apache.hive.service.server.HiveServer2.main(HiveServer2.java:1149) [hive-service-3.1.2.jar:3.1.2]
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ~[?:1.8.0_222]
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) ~[?:1.8.0_222]
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[?:1.8.0_222]
at java.lang.reflect.Method.invoke(Method.java:498) ~[?:1.8.0_222]
at org.apache.hadoop.util.RunJar.run(RunJar.java:239) [hadoop-common-2.8.5.jar:?]
at org.apache.hadoop.util.RunJar.main(RunJar.java:153) [hadoop-common-2.8.5.jar:?]
Caused by: java.lang.ClassNotFoundException: org.apache.tez.dag.api.TezConfiguration
at java.net.URLClassLoader.findClass(URLClassLoader.java:382) ~[?:1.8.0_222]
at java.lang.ClassLoader.loadClass(ClassLoader.java:424) ~[?:1.8.0_222]
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349) ~[?:1.8.0_222]
at java.lang.ClassLoader.loadClass(ClassLoader.java:357) ~[?:1.8.0_222]
... 16 more

fix error
在hive-site.xml添加如下配置

1
2
3
4
<property>
<name>hive.server2.active.passive.ha.enable</name>
<value>true</value>
</property>

spark

检查是否安装成功

script
1
2
./bin/spark-submit --master spark://localhost:7077 --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.11-2.1.1.jar 100
./bin/spark-submit --master spark://localhost:7077 --class org.apache.spark.examples.SparkPi /home/chen/work/service/spark-2.3.0-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.1.1.jar 100

最后更新: 2020年02月10日 21:02

原始链接: https://chenadminchen.github.io/2019/11/06/big-data-environment/

× 请我吃糖~
打赏二维码